

Mathematics Calculation Policy

St Vincent's Catholic Primary School

Last updated: February 2022

To love, serve and learn as Jesus shows us

Introduction

This policy aims to give guidance linked to the progression in teaching and learning of mental arithmetic and written calculations from Reception to Year 6. It focuses on the four operations of addition, subtraction, multiplication and division. This policy should be used with reference to the St Vincent's Mathematics Handbook.

The overarching aim is, by the end of Key Stage 2, children will be able to use an efficient method for each operation confidently and with understanding. It is encouraged that children recognise how, when and why to use mental methods and written methods to work out a calculation.

This policy sets out the rapid recall and mental calculation facts that our children are expected to master in each year group. Each class focusses on these skills for a dedicated amount of time each day of 10-15 minutes, in addition to the core Maths lesson.

In learning how to calculate using written methods, there are three stages, starting with concrete methods that support conceptual understanding, moving through to pictorial methods and then abstract methods which that allow children to demonstrate efficiency in procedural approaches.

All maths lessons must follow the methods in the policy and be taught in the stages set out, although it is recognised that teachers will adapt approaches in accordance with the needs of their pupils.

The presentation of calculations is vital and all children must be encouraged to set their written methods out neatly, well-spaced and in line with the examples shown in this policy. Where straight lines are required children should always use a ruler. Children should use a ruler to cross out any mistakes and re-write their new answer clearly. Numbers should be formed consistently across the school and additional guidance for this is also set out in the policy.

<u>EYFS</u>

Cardinality and Counting	 Count objects, actions and sounds Counting: saying number words in sequence Counting: tagging each object with one number word Counting: knowing the last number counted gives the total so far Subitise: recognising small quantities without needing to count them all Count beyond ten Link the number symbol with its cardinal number value Begin to represent number with own symbols Identifying missing numbers from number lines up to 10 Conservation: knowing that the number does not change if things are rearranged (as long as none have been added or taken away)
Comparison	 Compare numbers Understand the one more than / one less than relationship between consecutive numbers Identify groups with the same number of things Comparing numbers and reasoning
Composition	 Part-whole: identifying smaller numbers within a number (conceptual subitising – seeing groups and combining to a total) Inverse operations: partition a number of things into two groups and recognise that those groups can be recombined to make the same total. A number can be partitioned into different pairs of numbers A number can be partitioned into more than two numbers Automatically recall number bonds for numbers 0-5 and some to 10 Begin to understand mathematical symbols To begin to represent mathematical sentences with appropriate symbols To understand and recall doubling facts up to 10 To be introduced to the concepts of sharing equally and doubling. Beginning to use the term "half" and understand it means sharing into 2 equal parts To understand concept of odd and even numbers.

ELG: Number

- Have a deep understanding of number to 10, including the composition of each number

- Subitise (recognise quantities without counting) up to 5

- Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts.

ELG: Numerical Patterns

- Verbally count beyond 20, recognising the pattern of the counting system

- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity

- Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.

<u>Year 1</u>

Rapid Recall	 All pairs of numbers with a total to 10 e.g. 3+7 Addition and subtraction facts for all numbers to any number to 10 Addition doubles of all numbers to at least 10+10 Halving facts of even numbers to 20 One and two more/ less than any number up to 100 10 more/less of multiples of 10 5 more/ less of multiples of 5
Mental Strategies	 Count on or back in ones, twos, fives and tens Reorder numbers in calculation Begin to bridge through 10, and later 20, when adding a single-digit number Use known number facts and place value to add or subtract pairs of single-digit numbers Add 9 to single-digit numbers by adding 10 then subtracting 1 Subtract 9 by subtracting 10 then adding 1 Identify near doubles using doubles already know Use patterns of similar calculations
Mental Calculations	 Add or subtract a single digit to or from a single digit , without crossing 10 e.g. 4 + 5 , 8 - 3 Add or subtract a single digit to or from 10 Add or subtract a single digit to or from a 'teens' number, without crossing 20 or 10 e.g. 13 + 5, 17 - 3 Double of all numbers to 10 e.g. 8 + 8, double 6

<u>Year 2</u>

Rapid Recall	 Addition and subtraction facts for all numbers to at least 10 All pairs of numbers with a total of 20 e.g. 13 + 7 All pairs of multiples of 10 with a total of 100 e.g. 30 + 70 Multiplication facts for the 2 and 10 times tables and corresponding division facts Double of all numbers to ten and the corresponding halves Multiplication facts up to 5 x 5 e.g. 4 x 3 Know 10x, 2x, 5x tables Count forwards and backwards in 3's to 36 Know inverse ÷ for 10, 2 and 5
Mental Strategies	 count on or back in tens or ones find a small difference by counting up from the smaller to the larger number reorder numbers in a calculation add three small numbers by putting the largest number first and/or finding a pair totalling 10 partition additions into tens and units then recombine bridge through 10 or 20 use known number facts and place value to add or subtract pairs of numbers partition into '5 and a bit' when adding 6, 7, 8 or 9 add or subtract 9, 19, 11 or 21 by rounding and compensating identify near doubles use the relationship between addition/subtraction use knowledge of number facts and place value to multiply or divide by 2, 5 or 10 use doubles and halves and halving as the inverse of doubling
Mental Calculations	 add or subtract any single-digit to or from any two-digit number, without crossing the tens boundary, e.g. 62 + 4, 38 - 7 add or subtract any single-digit to or from a multiple of 10, e.g. 60 + 5, 80 - 7 add or subtract any 'teens' number to any two-digit number, without crossing the tens boundary, e.g. 23 + 14, 48 - 13 find what must be added to any two-digit multiple of 10 to make 100, e.g. 70 + ? = 100 add or subtract a multiple of 10 to or from any two-digit number, without crossing 100, e.g. 47 + 30, 82 - 50 subtract any two-digit number from any two-digit number when the difference is less than 10, e.g. 78 - 71 or 52 - 48 doubles of all numbers to at least 15, e.g. double 14 double any multiple of 5 up to 50, e.g. double 35 halve any multiple of 10 up to 100, e.g. halve 50

Year 3

all	 addition and subtraction facts for each number to 20, e.g. 13 + 4
Rec	 sums and differences of multiples of 10, e.g. 70 + 20 or 80 – 30
_ pid	• number pairs that total 100, e.g. 46 + 54
Rap	• multiplication facts for the 2, 3, 4, 5, 6 and 10 times tables and the corresponding division facts
	count on or back in tens or ones
	 find a small difference by counting up from the smaller to the larger number
	 reorder numbers in a calculation add three or four graduation
	• add three or four small numbers by putting the largest number first and/or by finding pairs totalling 9, 10 or 11
	 partition into tens and units then recombine
gies	 bridge through a multiple of 10, then adjust
ate	 use knowledge of number facts and place value to add or subtract pairs of numbers
Str	• partition into '5 and a bit' when adding 6, 7, 8 or 9
Ital	 add or subtract mentally a 'near multiple of 10' to or from a two-digit number identify near doubles
Mer	 use natterns of similar calculations
2	 say or write a subtraction statement corresponding to a given addition statement
	 to multiply a number by 10/100, shift its digits one/two places to the left
	• use knowledge of number facts and place value to multiply or divide by 2, 5 or 10, 100
	use doubling or halving
	 say or write a division statement corresponding to a given multiplication statement
	 find what must be added to any multiple of 100 to make 1000, e.g. 300 + ? = 1000
	 add or subtract any pair of two-digit numbers, without crossing a tens boundary or 100, e.g. 33 + 45, 87 – 2
10	 add or subtract any single-digit to any two-digit number, including crossing the tens boundary, e.g. 67 + 5, 82 - 7
tions	 find what must be added to/subtracted from any two-digit number to make the next
cula	higher/lower multiple of 10. e.g. 64 + ? = 70, 56 - ? = 50
I Calc	 subtract any three-digit number from any three-digit number when the difference is less than 10, e.g. 458 – 451, or 603 – 597
lenta	 find what must be added to/subtracted from any three-digit number to make the next higher/lower multiple of 10, e.g. 647 + ? = 650, 246 - ? = 240
2	• double any number to at least 20, e.g. double 18, and corresponding halves, e.g. halve 36;
	double 60, halve 120; double 35, halve 70; double 450, halve 900
	 multiply single-digit numbers by 10 or 100, e.g. 6 x 100
	 divide any multiple of 10 by 10, e.g. 60 ÷ 10, and any multiple of 100 by 100, e.g. 700 ÷ 100

Year 4

p II	• Multiplication facts of the 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 times tables
teca teca	 Division facts corresponding to tables of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12
	e count on an back in repeated stone of 1, 10 and 100
	 count on or back in repeated steps of 1, 10 and 100 count up through the payt multiple of 10, 100 or 1000
	 reorder numbers in a calculation
	 add 3 or 4 small numbers, finding pairs totalling 10
	 add three two-digit multiples of 10
	 partition into tens and units, adding the tens first
	 bridge through 100
ies	 use knowledge of number facts and place value to add or subtract any pair of two-digit numbers
tegi	 add or subtract 9, 19, 29, 11, 21 or 31 by rounding and compensating
trai	 add or subtract the nearest multiple of 10 then adjust
al S	identify near doubles
ent	 continue to use the relationship between addition and subtraction
ž	 double any two-digit number by doubling tens first
	 use known number facts and place value to multiply or divide, including multiplying and dividing
	by 10 and then 100
	partition to carry out multiplication
	use doubling or halving
	 use closely related facts to carry out multiplication and division
	use the relationship between multiplication and division
	• find what must be added to any two-digit number to make 100, e.g. 37 + ? = 100
	 add or subtract any pair of two-digit numbers, e.g. 38 + 85, 92 – 47
	• find out what must be added to/subtracted from any two- or three-digit number to make the
s	next higher/lower multiple of 100, e.g. $3/4 + ? = 400$, $826 - ? = 800$
ion	 Subtract any four-digit number from any four-digit number when the difference is small, e.g. 3641 – 3628, 6002 – 5991
ulat	 double any whole number from 1 to 50, e.g. double 36, and find all the corresponding halves.
alc	e.g. 96 ÷ 2
al C	• double any multiple of 10 to 500, e.g. 380 x 2, and find all the corresponding halves, e.g. 760 ÷ 2,
ent	130÷2
Σ	 double any multiple of 5 to 100, e.g. 65 x 2
	 multiply any two-digit number by 10, e.g. 26 x 10
	 divide a multiple of 100 by 10, e.g. 600 ÷ 10
	 multiply any two-digit multiple of 10 by any single-digit number

<u>Year 5</u>

Rapid Recall	 multiplication facts up to 12 x 12 and corresponding division facts Derive sums and differences of decimals, e.g. 6.5 ± 2.7 doubles and halves of decimals, e.g of 5.6 				
Mental Strategies	 count up through the next multiple of 10, 100 or 1000 reorder numbers in a calculation partition into hundreds, tens and units, adding the most significant digit first use known number facts and place value to add or subtract pairs of three-digit multiples of 10 and two-digit numbers with one decimal place add or subtract the nearest multiple of 10 or 100 then adjust identify near doubles add several numbers develop further the relationship between addition and subtraction use factors partition to carry out multiplication use doubling and halving use the relationship between multiplication and division use the relationship between multiplication and division use knowledge of number facts and place value to multiply or divide 				
Mental Calculations	 add or subtract any pair of three-digit multiples of 10, e.g. 570 + 250, 620 - 380 find what must be added to a decimal fraction with units and tenths to make the next higher whole number, e.g. 4.3 + ? = 5 add or subtract any pair of decimal fractions each with units and tenths, or each with tenths and hundredths, e.g. 5.7 + 2.5, 0.63 - 0.48 subtract a four-digit number just less than a multiple of 1000 from a four-digit number just more than a multiple of 1000, e.g. 5001-1997 multiply any two- or three-digit number by 10 or 100, e.g. 79 x 100, 363 x 100 divide a multiple of 100 by 10 or 100, e.g. 4000 ÷ 10, 3600 ÷ 100 multiply any two-digit multiple of 10 by a single-digit, e.g. 60 x 7, 90 x 6 double any whole number from 1 to 100, multiples of 10 to 1000, and find corresponding halves find 50%, 25%, 10% of small whole numbers or quantities, e.g. 25% or £8 				

Year 6

Rapid Recall	 multiplication and division facts involving decimals, e.g. 0.8 x 7 and 4.8 ÷ 6 squares of numbers to 12 x 12 and the corresponding squares of multiples of 10
Mental Strategies	 consolidate all strategies from previous years use knowledge of number facts and place value to add or subtract pairs of three-digit multiples of 10 and two-digit numbers with one decimal place add or subtract the nearest multiple of 10, 100 or 1000, then adjust continue to use the relationship between addition and subtraction use factors partition to carry out multiplication use closely related facts to carry out multiplication and division use the relationship between multiplication and division use the relationship between multiplication and division
Mental Calculations	 multiply any two-digit number by a single-digit, e.g. 34 x 6 multiply any two-digit number by 50 or 25, e.g. 23 x 50, 47 x 25 multiply or divide any whole number by 10 or 100, giving any remainder as a decimal, e.g. 47 ÷ 10 = 4.7, 1763 ÷ 100 = 17.63 find squares of multiples of 10 to 100 find any multiple of 10% of a whole number or quantity, e.g. 70% of £20, 50% of 5kg, 20% of 2 metres

nethod- g.
methods. ue counters d for ecimal
nethod ouping.
methods. Je counters
als- with amounts of olaces.

Multiplication	Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Arrays- showing commutative multiplication	Arrays 2d × 1d using base 10	Column multiplication- introduced with place value counters. (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first(up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods (multi-digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping Division within arrays- linking to multiplication Repeated subtraction	Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction. 2d divided by 1d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit number) Children should exchange into the tenths and hundredths column too

Calculation Guidance: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' is the same as'.

Calculation Guidance: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can	4-3=
beanbags could be used).	also be used.	= 4 - 3
4 - 3 = 1	MARO	4 3 ?
		4
	XXX	? 3
Counting back (using number lines or number tracks) children start with 6 and count back 2.	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and
6 - 2 = 4		show their jumps. Encourage children to use an empty number line
	12345678910	012345678910
		46

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5.	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. 8 – 5, the difference is Children to explore why 9 - 6 = 8 – 5 = 7 – 4 have the same difference.
Making 10 using ten frames. 14 - 5 - 4 - 1 - 4 - 1	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. 14 - 5 = 9 4 14 - 4 = 10 10 - 1 = 9
Column method using base 10. 48-7 10s 1s 10s 1s 48-7 10s 1s 4 1	Children to represent the base 10 pictorially.	Column method or children could count back 7. 4 8 - 7 4 1

Calculation Guidance: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3×4 4 + 4 + 4 There are 3 equal groups, with 4 in each group. ()	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12
Number lines to show repeated groups- 3 × 4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4 = 12$

Use arrays to illustrate commutativity counters and other	Children to represent the arrays pictorially.	Children to be able to use an array to write a
objects can also be used.		range of calculations e.g.
$2 \times 5 = 5 \times 2$ 2 lots of 5 $5 lots of 2$		$10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. 4×15
		10 5 10 x 4 = 40 5 x 4 = 20 40 + 20 = 60 A number line can also be used 40 + 20 = 60 A number line can also be used 5×4 40 + 20 = 60 5×4 40 + 20 = 60
Formal column method with place value counters (base 10 can also be used.) 3 × 23	Children to represent the counters pictorially.	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $/$ $3 \times 3 = 9$ 20 3 $60 + 9 = 69$
	00 000 00 000 6 9	23 <u>× 3</u> 69

Formal column method with place value counters. 6 × 23 100s 10s 1s 000 000 100s 10s 1s 100s 10s 1s 000 000 000 000 0000 000 000 000 0000 000 000 000 000 000 0000 000 000 000 00	Children to represent t e.g. the image below.	the counters/base 10, pictorially	Formal written method $6 \times 23 =$ 23 $\times 6$ 138 1 1 1 2 4 $\times 26$ $\sqrt{7} 4 4$ $2 \sqrt{4} 8 0$ 3 2 2 4 1 1	
Conceptual variation; d 23 23 23 23 23 23 3 23 23 23 23 23 23 3 3 a week. How many legone week?	ifferent way vim 23 lengths, 6 times ngths did she swim in nters, prove that 6 x 23	Find the product of 6 and 23 $6 \times 23 =$ $= 6 \times 23$ $6 \times 23 =$ 6×23 $23 \times 23 \times 6$ 	Answer: 3224	6 × 23

Calculation Guidance: Division

Key language: share, group, divide, divided by, half.

2d + 1d with remainders using lollipop sticks. Cuisenaire	Children to represent the lollipop sticks pictorially.	13 ÷ 4 – 3 remainder 1	
13 ÷ 4		Children should be encouraged to use their times table facts; they could also represent	
Use of lollipop sticks to form wholes- squares are made		repeated addition on a number line.	
because we are dividing by 4.			
		'3 groups of 4, with 1 left over'	
	There are 3 whole squares with 1 left over		
There are 3 whole squares, with 1 left over		13	
Sharing using place value counters.	Children to represent the place value counters	Children to be able to make sense of the	
$42 \div 3 = 14$	pictorially.	place value counters and write calculations to	
000000 000	(Cooker)	show the process.	
	QQQQ , BBBBBB QB	42.3	
10s 1s 10s 1s	10s / 1s	$42 \div 3$ 42 = 30 + 12	
		$30 \div 3 = 10$	
	0 0 0 0 0	$12 \div 3 = 4$	
	0 0000	10 + 4 = 14	
10s 1s	0000		
10s 1s			
	0 0000		
	0 000		

Short division using place value counters to group. 615 ÷ 5

1. Make 615 with place value counters.

2. How many groups of 5 hundreds can you make with 6 hundred counters?

3. Exchange 1 hundred for 10 tens.

4. How many groups of 5 tens can you make with 11 ten counters?

5. Exchange 1 ten for 10 ones.

6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters $2544 \div 12$

1000s	100s	10s	1s 0000	We can't group 2 thousands into groups of 12 so will exchange them.
1000s	100s	10s	1s	We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.

Number Formation Guidance

Numbers should be formed consistently across the school and children should be made aware of the range of variations that they may see in printed formats.

